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Abstract 

Acceptance Sampling is a statistical technique used to determine the quality of a batch or lot of 

products by inspecting a random sample and ensuring products meets quality standards while minimizing 

inspecting costs. In a well-monitored manufacturing environment, non-conformities occur infrequently, 

resulting in many instances with zero non-conformities. Under such circumstances, the appropriate probability 

distribution for the number of non-conformities is a Zero-Inflated Poisson distribution. This paper describes 

in designing Single Sampling Plans by attributes when the number of non-conformities per product follows 

the Zero-Inflated Poisson distribution [ZIPD]. The design methodology focuses on the performance measures 

and OC curves are also provided. This paper focuses on designing of ZIPD using fuzzy logic theory and 

highlighting its efficiency with existing plans. 

Keywords: Fuzzy Logic, OC Curve, Poisson distribution, SSP, Uncertainty, ZIPD. 

Introduction 

Acceptance sampling is a statistical quality control method used to determine whether to accept or 

reject a specific lot of products based on a sample. This method helps in making decisions about the quality 

of a batch without inspecting each and every item, which is particularly useful in mass production scenarios. 

Hence, acceptance sampling plans are a fundamental tool in quality control, helping organizations maintain 

product quality while optimizing inspection resources. By carefully designing and implementing a sampling 

plan, businesses can achieve a balance between quality assurance and operational efficiency based on the shop 

floor situation in any msd. 

Acceptance sampling by attributes includes Single Sampling Plans (SSP), Double Sampling Plans 

(DSP), Multiple Sampling Plans, Sequential Sampling Plans, Continuous Sampling Plans, and Skip-Lot 

Sampling Plans and other special purpose sampling plan. SSP by attributes is characterized by two parameters: 

sample size (n), and acceptance number (c). The plan parameters are determined to protect the interests of 

both the producer and the consumer. The process of determining these parameters, ensuring protection for 

both parties, is termed “designing SSPs by attributes”. More details about determination of sampling plans 

can be found in Stephens (2001) and Schilling and Neubauer (2009). The procedure for determining the plan 

parameters based on the operating ratio and unity values under the conditions of Poisson distribution are 

discussed in Duncan (1986) and Schilling and Neubauer (2009). 

Zero Inflated Poisson Distribution (ZIPD) 

Due to the technological development, production processes are well designed in such a way that the 

products are in perfect state, so that the number of zero defects will be found more in those cases. However, 

random fluctuations in the production processes may lead some products to an imperfect state. The appropriate 

probability distribution to describe such situations is a zero-inflated Poisson (ZIP) distribution. The ZIP 

distribution can be viewed as a mixture of a distribution which degenerates at zero and a Poisson distribution. 
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ZIP distribution has been used in a wide range of disciplines such as agriculture, epidemiology, econometrics, 

public health, process control, medicine, manufacturing etc. 

Review of Literature 

 In the following, provide a brief but comprehensive literature review to show how other researchers 

have used the ZIP distribution to model real-life data. 

The ZIP distribution has been used as an appropriate probability distribution in diversified fields. Lambert 

et.al (1992) fitted a ZIP regression model to the data concerning the number of defects in a manufacturing 

process. Gurma et.al (1996) applied ZIP model for studying recreational trips. Saei et.al (1997) used this 

distribution for studying chemotherapy use. Bohning (1998) argues that the simple Poisson distribution is 

often unsuitable for datasets with numerous zeros. For example, in a study of 98 HIV-positive men, the number 

of urinary tract infections showed a large number of zero counts. When visualized, there is a significant spike 

at zero, and the Poisson model does not fit well. However, the ZIP model fits better. Therefore, Bohning 

suggests that the ZIP model is more appropriate when there is an inflation of zeros in count data. Ridout et.al 

(1998) have studied the problem of modelling count data with many zeros in horticultural research and 

investigated the appropriateness of the ZIP (Zi, λ) model over the zero-inflated negative binomial model. 

Dankmar Bohning et.al (1999) have used ZIP (Zi, λ) regression model to study a set of dental epidemiological 

data. Hall (2000) has carried out a case study on irrigation of greenhouse crops.  

Xie et al., 2001 has described that Poisson distribution has often been used for count related data. He 

has explained with some examples. In a near zero-defect manufacturing environment, there are many zero-

defect counts even for fairly large sample size. In this situation ZIPD is more appropriate. Xiang Liming et.al 

(2007) has discussed about the count data with extra zeros are common in many medical applications. A score 

test is projected for testing the ZIP mixed regression model against the Zero-inflated negative binomial 

alternative. Sampling distribution and power of the test statistic are evaluated by simulation studies. Traiqul 

Hasan et.al (2009) has proposed a non-stationary, observation driven time series model-based correlation 

structure. He has discussed about the estimation of the model parameters and the inefficiency of the estimators 

when the correlation structure is mis-specified. Zhao Yang et.al (2010a) has simplified the score statistic to 

test over dispersion in the zero-inflated generalized poisson (ZIGP) mixed model, and discussed an extension 

to test over dispersion in ZIP mixed models. Zhao Yang et.al (2010b) observed that the negative binomial 

(NB) model and the generalized poisson (GP) model are common to poisson models when over thinning out 

is present in the data. He has derived two score statistics from the GP model to zero-inflation. He has used 

simulation study illustrates that the developed score statistics reasonably follow a chi-square distribution and 

maintain the nominal level. Extension simulations also designate the power behavior is different including 

continuous variables than a binary variable in zero-inflation. Zhao Yang et.al (2010c) enlarged the score test 

statistic for over diffusion in poisson and binomial regression models to the zero-inflated poisson models. He 

has pointed out many examples which are related to ZIPD. 

 Jun Yang et.al (2011) described about the ZIPD which has been used in the modelling of count data in 

different contexts. This model tends to prejudiced by outliers because of the excessive occurrence of zeros, 

thus outlier identification and robust parameter estimation are important for such distribution. To eradicate 

the effects of outliers, he has used two robust parameter estimates are proposed based on the trimmed mean 

and the winsorized mean. Loganathan et.al (2012) discussed the notion of single sampling plans by attributes 

in detail under the assumptions of a zero-inflated poisson distribution. The OC function of the single sampling 

plan under the conditions of ZIPD has resultant. A unity value under the condition of ZIPD has presented and 

tabulated for the SSP under ZIPD reduces both producer’s risk and consumer’s risk. 
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 Uma et.al (2016) presented QSS with the reference to single sampling plan using ZIPD as the baseline 

distribution, and constructed the tables for various system indexed by various combinations of parameters for 

acceptance number tightening. Uma et.al (2016) discussed the determination of Quick Switching System by 

Attributes under the conditions of Zero-inflated Poisson Distribution. In this paper, the sample size and the 

acceptance numbers are calculated for the fixed AQL and LQL values. Raffie (2020) developed the Tightened-

Normal-Tightened (TNT) sampling scheme by attributes, specifically for cases where the number of defects 

follows a zero-inflated Poisson (ZIP) distribution. Unity values were considered in constructing the scheme 

under these conditions. Numerical examples were provided to illustrate the determination of the TNT sampling 

scheme under the ZIP distribution and to evaluate its performance in comparison with the TNT scheme under 

the standard Poisson distribution. 

 Tajuddin et al. (2022) evaluated how well the zero–one-inflated Poisson–Lindley distribution models 

overdispersed data with an excess of zeros and ones by varying their proportions in the dataset. Their analysis 

of real-world datasets with these characteristics revealed that the proposed distribution outperforms other 

competing models, providing the best fit. Sun et al. (2023) introduced the zero-one-two-inflated Poisson 

(ZOTIP) distribution to model count data with excess zeros, ones, and twos. This distribution incorporates the 

zero-inflated Poisson (ZIP) and the zero-and-one-inflated Poisson (ZOIP) distributions as special cases. 

Abusaif et al. (2024) introduced a new flexible count regression analysis. They proposed an arbitrary multiply-

inflated count regression model based on the modified Poisson distribution. To validate their model, they 

analyzed two practical datasets, demonstrating its superiority over existing alternatives. 

Acceptance Single Sampling Plan with Fuzzy Parameter using Poisson Distribution 

        To inspect a large lot of size N, we first take a randomized sample of size n from the lot. We then inspect 

all items in the sample and count the number of defective items (d). If the number of defective items is less 

than or equal to the acceptance number, the lot will be accepted; otherwise, it will be rejected. When the lot 

size is large, the random variable ‘d’ follows a binomial distribution with parameters n and p, where p 

represents the proportion of defective items in the lot. However, if the sample size is large and p is small, the 

random variable ‘d’ can be approximated by a Poisson distribution with 𝜆 = np. The probability that the 

number of defective items is exactly ‘d’ and is given by, 

                                                          P(d) =  
e−λλd

d!
                                              ………… (1) 

And the probability of acceptance of the lot Pa(P) is: 

                                             Pa(P) = P(d ≤ c) = ∑
e−λλd

d!

c
d=0                              ….……… (2) 

Suppose that we want to inspect a large lot of size N, with an unknown precise proportion of damaged items. 

We represent this parameter with a fuzzy number p̃ as follows: 

p̃ = (a1, a2, a3) 

where, pϵp̃[1], qϵq̃[1], p + q = 1 

A single sampling plan with a fuzzy parameter is defined by the sample size n, and acceptance number c. If 

the number of observation defective item is less than or equal to c, the lot will be accepted. For a large N, the 

number of defective items in this sample (d) follows a fuzzy binomial distribution. If p̃ is a small, the random 

variable d follows a fuzzy Poisson distribution with parameter λ̃ = np̃. Thus, the fuzzy probability of having 

exactly d defective items in a sample is given below: 

p̃(d − defective)[α] = [PL[α], PU[α]] 
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                                               PL[α] = min {
e−λλd

d!
|λϵnp̃[α]}                              ……………… (3) 

                                        PU[α] = max {
e−λλd

d!
|λϵnp̃[α]}                              ……………… (4) 

and fuzzy acceptance probability is as follows: 

pã = {∑
e−λλd

d!
|

c

d=0

λϵλ̃[α]} = [PL[α], PU[α]] 

                                     PL[α] = min {∑
e−λλd

d!
|c

d=0 λϵλ̃[α]}                         ………………. (5) 

                                          PU[α] = max {∑
e−λλd

d!
|c

d=0 λϵλ̃[α]}                      ……………….. (6) 

Acceptance Single Sampling Plan with Fuzzy Parameter using Zero-Inflated Poisson Distribution 

When a random sample is drawn from a production process in a continuous stream the observed 

number of defects in the sample is distributed according to Poisson distribution with parameter λ = np, which 

is the average number of defects per unit. Schilling (1982) has pointed out when n/N ≤ 0.10, n is large, p is 

small such that np < 5, the Poisson distribution is appropriate. 

In many practical situations, a Poisson random variable can take the value “0” quite frequently. For 

instance, when the manufacturing equipment is properly aligned, number of defects may be nearly zero. Under 

such circumstances, the suitable probability distribution of the number of defects is a zero-inflated Poisson 

distribution rather than the usual Poisson distribution. 

A Zero-Inflated Poisson distribution (ZIP) is defined by the following probability mass function.  

  P(X = X|Zi, λ) =  Zif(x) + (1 − Zi)P(X = x|λ)         ………… (7) 

where 

                          f(x) = {
1, if x = 0
0, if x ≠ 0

        

and         …………. (8) 

                         P(X = x|λ) =
e−λλx

x!
 , where x = 0,1,2,…..    

The above probability mass function can also be expressed as 

P(X = x|Zi, λ) = {

Zi + (1 − Zi)e−λ,                                      when x = 0

(1 − Zi)
e−λλx

x!
, when x = 1,2, … .0 < Zi < 1, λ > 0 

 

  ..………. (9) 

In this distribution, Zi may be termed as the mixing proportion. Zi and λ are the parameters of the 

ZIPD. According to McLachlan and Peel (2000), a ZIPD is a special kind of mixture distribution. 

The OC function of the ZIP (Zi, λ) distribution is as follows 

                         Pa(P) = Zi + (1 − Zi)e−λ + ∑ (1 − Zi)
e−λλx

x!

c0
x=1          ………… (10) 

and fuzzy acceptance probability for P is as follows: 

                 PZIP
L = min {Zi + (1 − Zi)e−λ + (1 − Zi) ∑

e−λλx

x!

c0
x=1 }                       …………. (11) 

              PZIP
U = max {Zi + (1 − Zi)e−λ + (1 − Zi) ∑

e−λλx

x!

c0
x=1 }                       …………. (12) 

                                      Pã = [PZIP
L (α), PZIP

U (α)]  

OC Band with Fuzzy Parameters: 
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The Operating Characteristic (OC) curve is a key criterion in a sampling plan. It helps determine the 

probability of accepting or rejecting a lot with a specific number of defective items. The OC curve shows the 

performance of acceptance sampling plans by plotting the probability of accepting a lot against its quality, 

which is represented by the proportion of defective items. It aids in selecting plans that effectively reduce risk 

and demonstrates the discriminating power of the plan. 

In a fuzzy environment, the probability of accepting a lot is expressed as a band with upper and lower 

bounds, based on the fuzzy fraction of defective items. The bandwidth of this band depends on the degree of 

uncertainty in the proportion parameter. A lower uncertainty results in a narrower bandwidth, and if the 

proportion parameter has a precise value, the upper and lower bounds converge, resulting in a classic OC 

curve. By understanding the degree of uncertainty in the proportion parameter and its variation along the 

horizontal axis, different fuzzy numbers (p̃) can be obtained, leading to different proportions (p) and the 

corresponding OC bands. 

Example: 

The washing machine manufacturing industry is interested in assessing the reliability of its products 

over time. To achieve this, the company aims to investigate the number of repair incidents per month for a 

sample of washing machines in use.  

In that, if half percent of the products are poorly packaged, major customers inspect 50 items from the 

available stock before making a purchase decision. If there is a high occurrence of zero defective items, the 

ZIPD method can be applied. Customers will buy all the products if the sample contains one defective item. 

If the sample contains more than one defective item, the customers will not make the purchase. Given the 

proportion of defective products is described linguistically, a fuzzy number p̃ = (0, 0.005, 0.01) is used. 

Therefore, the probability purchasing would be described in the following: 

In the single sampling plan, n = 50, C0 = 1, p̃ = (0, 0.005, 0.01) and in the ZIPD, λ̃ = [0, 0.25, 0.5], 

λ̃[α] = [0.25α, 0.5 – 0.25 α], then corresponding probability for single sampling plan is obtained to get the 

probability of acceptance of the plan. 

 

 

 

 

 

Table 1: Probability of Acceptance for ZIPDF (n; c0) 

The Table 1 shows the probability of acceptance for zero-inflated Poisson distribution using fuzzy 

which is calculated for fixed sample size 50 and the acceptance number 1. 

𝐙𝐢 �̃� ZIPDF (50,1) 

0.05 [0,0.01] [1,0.9143] 

0.05 [0.01,0.02] [0.9143,0.7489] 

0.05 [0.02,0.03] [0.7489,0.5799] 

0.05 [0.03,0.04] [0.5799,0.4357] 

0.05 [0.04,0.05] [0.4357,0.3229] 

0.05 [0.05,0.06] [0.3229,0.2391] 

0.05 [0.06,0.07] [0.2391,0.1790] 

0.05 [0.07,0.08] [0.1790,0.1369] 

0.05 [0.08,0.09] [0.1369,0.1080] 
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0.05 [0.09,0.10] [0.1080,0.0884] 

 

Figure 1: OC band for ZIPDF with fuzzy parameter of ZIPD (50;1) 

 
 

The above Figure shows the OC band for the ZIPDF which holds the upper and lower bounds. 

Comparison of Sample sizes: 

The following table  gives the comparison of probability of acceptance of Fuzzy Zero-Inflated Poisson 

distribution for various p̃ & Zi with same acceptance number and different sample sizes are as n=30 & 50 and 

c=2 and its OC curve is presented in Figure 2. 

 

 

 

 

 

Table 2: Comparative Probability of Acceptance for Fuzzy ZIPD (30;2) &  

Fuzzy ZIPD (50;2) 

𝐙𝐢 �̃� 
Pa(P) 

n=30 n=50 

0.05 [0,0.01] [1,0.9965] [1,0.9863] 

0.05 [0.01,0.02] [0.9965,0.9780] [0.9863,0.9237] 

0.05 [0.02,0.03] [0.9780,0.9402] [0.9237,0.8184] 

0.05 [0.03,0.04] [0.9402,0.8855] [0.8184,0.6928] 

0.05 [0.04,0.05] [0.8855,0.8184] [0.6928,0.5666] 

0.05 [0.05,0.06] [0.8184,0.7440] [0.5666,0.4520] 

0.05 [0.06,0.07] [0.7440,0.6671] [0.4520,0.3548] 

0.05 [0.07,0.08] [0.6671,0.5912] [0.3548,0.2762] 

0.05 [0.08,0.09] [0.5912,0.5189] [0.2762,0.2149] 

0.05 [0.09,0.10] [0.5189,0.4520] [0.2149,0.1684] 

0.05 [0.10,0.11] [0.4520,0.3914] [0.1684,0.1339] 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
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FUZZY ZERO-INFLATED POISSON 
DISTRIBUTION

FZIPD-Upper

FZIPD-Lower
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0.05 [0.11,0.12] [0.3914,0.3376] [0.1339,0.1088] 

0.05 [0.12,0.13] [0.3376,0.2904] [0.1088,0.0908] 

0.05 [0.13,0.14] [0.2904,0.2497] [0.0908,0.0781] 

0.05 [0.14,0.15] [0.2497,0.2148] [0.0781,0.0692] 

0.05 [0.15,0.16] [0.2148,0.1854] [0.0692,0.0630] 

 

Figure: 2 

This Figure shows the OC bands for sample sizes n=30 and n=50 with acceptance number c=2. 

Indicating that OC bands are convex with one acceptance number and this leads to a quick reduction of fuzzy 

probability of acceptance for proportion of defective items with small fuzzy numbers, and it will be more the 

increase of n. 

 
 

 

Table 3: Comparative Probability of Acceptance of ZIPD with Poisson distribution using Fuzzy 

 The following Table shows the Probability of acceptance for various  

p̃ & Zi for fuzzy Poisson distribution and fuzzy ZIPD with parameters n=50, c=2. 

𝐙𝐢 �̃� 
Fuzzy Poisson 

(50,2) 

Fuzzy ZIPD 

(50,2) 

0.05 [0,0.01] [1,0.9856] [1,0.9863] 

0.05 [0.01,0.02] [0.9856,0.9196] [0.9863,0.9237] 

0.05 [0.02,0.03] 0.9196,0.8088] [0.9237,0.8184] 

0.05 [0.03,0.04] [0.8088,0.6766] [0.8184,0.6928] 

0.05 [0.04,0.05] [0.6766,0.5438] [0.6928,0.5666] 

0.05 [0.05,0.06] [0.5438,0.4231] [0.5666,0.4520] 

0.05 [0.06,0.07] [0.4231,0.3208] [0.4520,0.3548] 

0.05 [0.07,0.08] [0.3208,0.2381] [0.3548,0.2762] 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.01 0.03 0.05 0.07 0.09 0.11 0.13 0.15 0.17 0.19

P
a(

P
)

p

FZIPD_Upper n=50 & c=2

FZIPD_Lower n=50 & c=2

FZIPD_Upper n=30 & c=2

FZIPD_Lower n=30 & c=2
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0.05 [0.08,0.09] [0.2381,0.1735] [0.2762,0.2149] 

0.05 [0.09,0.10] [0.1735,0.1246] [0.2149,0.1684] 

0.05 [0.10,0.11] [0.1246,0.0883] [0.1684,0.1339] 

0.05 [0.11,0.12] [0.0883,0.0619] [0.1339,0.1088] 

0.05 [0.12,0.13] [0.0619,0.0430] [0.1088,0.0908] 

0.05 [0.13,0.14] [0.0430,0.0296] [0.0908,0.0781] 

0.05 [0.14,0.15] [0.0296,0.0202] [0.0781,0.0692] 

0.05 [0.15,0.16] [0.0202,0.0137] [0.0692,0.0630] 

 

Figure: 3 

 
Figure 3 illustrates the probability of acceptance for the fuzzy zero-inflated Poisson distribution and the fuzzy 

Poisson distribution, using the same sample size and acceptance number. The figure demonstrates that the two 

bands closely approximate each other. Ultimately, this suggests that the OC band using the fuzzy ZIPD 

provides an optimal approximation for the OC band using the Fuzzy Poisson distribution. Therefore, compared 

to the Fuzzy Poisson distribution, the Fuzzy ZIPD generally yields a higher probability of acceptance. 

Conclusion: 

In a well-equipped production process, the majority of products meet specified quality standards, often 

resulting in a higher frequency of zero non-conformities during sampling inspection. The zero-inflated model 

is the appropriate probability distribution for the number of non-conformities per product manufactured under 

such conditions. This paper figures out the Probability of acceptance for Single Sampling Plan using Fuzzy 

ZIPD for the desired parameters and also assessed for different sample sizes with fixed acceptance number. 

Under Fuzziness environment the Zero Inflated Poisson Distribution is compared with Poisson distribution 

with single sampling plan as the base line distribution for the specified parameters to highlight its advantages 

and significances. Accordingly, the Probability of acceptance for Fuzzy ZIPD is found to be efficient than 

Fuzzy Poisson Distribution.  In the shop floor situations when there is more uncertainty the fuzzy ZIPD is 

more beneficial for both consumer and producer.  
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