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Abstract 

This study investigates the magnetohydrodynamic (MHD) peristaltic flow of a non-Newtonian 

nanofluid in an asymmetric channel under the influence of heat and mass transfer. The fluid is modeled using 

the Casson rheological model to account for yield stress effects, while the Buongiorno nanofluid model 

incorporates Brownian motion and thermophoresis. The governing equations are simplified under long-

wavelength and low-Reynolds-number approximations and solved analytically using perturbation methods 

and numerically via the finite element method. The effects of key parameters such as the Hartmann number, 

Casson parameter, Grashof number, Soret number, and thermophoretic diffusion are analyzed on velocity, 

temperature, nanoparticle concentration, pressure rise, and trapping phenomena. Results indicate that 

increasing the magnetic field strength reduces flow velocity but enhances temperature distribution due to Joule 

heating. The Casson parameter significantly alters the yield stress behavior, while thermophoresis and 

Brownian motion critically influence nanoparticle migration. This work has applications in biomedical 

engineering, particularly in drug delivery systems and hyperthermia treatment. 

Keywords: MHD, Peristaltic flow, Non-Newtonian fluid, Nanofluid, Heat and mass transfer, Asymmetric 

channel, Casson model. 

Introduction 

Peristaltic flow, characterized by the propagation of contraction waves along flexible channel walls, is 

fundamental to physiological systems (e.g., gastrointestinal transport, blood circulation) and industrial 

processes (e.g., roller pumps, microfluidic devices). The coupling of magnetohydrodynamics (MHD) with 

peristalsis introduces Lorentz forces, which enable precise flow control—a principle exploited in magnetic 

drug targeting and cancer hyperthermia. Non-Newtonian nanofluids further enrich this dynamics by 

introducing yield stress (Casson model) and nanoparticle-mediated heat transfer (Buongiorno model). 

1.2. Literature Review 

Peristaltic Flow 

• Early studies by Shapiro et al. (1969) established the foundations of peristaltic transport in symmetric 

channels. 

• Mishra and Rao (2003) extended this to asymmetric geometries, revealing flow reversal at high occlusion 

ratios. 

MHD Effects 

• Hayat et al. (2008) demonstrated that Lorentz forces suppress retrograde flow in Jeffrey fluids. 

• Nadeem and Akbar (2010) analyzed variable MHD effects in vertical annuli, showing enhanced pumping 

efficiency at moderate Hartmann numbers (1 < M < 5). 

Non-Newtonian Nanofluids 
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• The Casson model (Casson, 1959) accurately captures blood’s yield stress behavior (Dash et al., 2016). 

• Buongiorno’s model (2006) quantifies nanoparticle migration via thermophoresis and Brownian 

diffusion. 

Knowledge Gaps 

Prior works lack: 

1. Coupled analysis of Casson nanofluids in asymmetric MHD peristalsis. 

2. Thermophoretic effects on nanoparticle distribution under magnetic fields. 

3. Clinical correlations for drug delivery optimization. 

2. Mathematical Formulation 

2.1. Problem Geometry 

An asymmetric channel with peristaltic walls is defined by: 

h1(X,t)=d1+a1cos(λ2π(X−ct)),(Upper wall), h2(X,t)=−d2−a2cos(λ2π(X−ct)+ϕ), (Lower wall) 

where ai, di are amplitudes and channel widths, and ϕ is phase difference. 

 

Fig.2.1 Geometry of Problem 

2.2. Governing Equations 

Casson Nanofluid Model 

τij={2(μB+2πτy)eij,0,π>πc. 

where τy is yield stress, μB is plastic viscosity, and π=eijeij. 

Conservation Laws 

1. Continuity: 

∂X∂U+∂Y∂V=0 

2. Momentum (X-direction): 

ρf(∂t∂U+U∂X∂U+V∂Y∂U)=−∂X∂P+∂X∂τXX+∂Y∂τXY−σB02U+ρfgβT(T−T0) 

3. Energy: 

(ρc)f(∂t∂T+U∂X∂T+V∂Y∂T)=k∇2T+(ρc)p[DB∇C⋅∇T+T0DT∇T⋅∇T] 

4. Nanoparticle Concentration: 

∂t∂C+U∂X∂C+V∂Y∂C=DB∇2C+T0DT∇2T 
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2.3. Boundary Conditions 

• No-slip: U=0 at Y=h1(X,t) and Y=h2(X,t). 

• Thermal: T=T1 (upper wall), T=T0 (lower wall). 

• Nanoparticle flux: ∂Y∂C=0 at walls. 

3. Solution Methodology 

3.1. Dimensionless Variables 

x=λ X, y=d1Y, u=cU, θ=T1−T0, σ=C1−C0 

3.2. Perturbation Solution 

Under long-wavelength (δ=d1/λ≪1) and low-Reynolds-number (Re≪1) approximations: 

Zeroth-Order System 

∂x∂p=∂y∂((1+β1)∂y∂u0)−M2u0+Grθ0 

where β=μB2πc/τy is the Casson parameter. 

First-Order Correction 

∂x∂p1=Nonlinear terms+O(δ2) 

3.3. Numerical Validation 

The COMSOL Multiphysics® finite element method (FEM) is employed with: 

• Quadratic Lagrange elements for velocity/pressure. 

• Mesh independence achieved at 50,000 elements. 

4. Results and Discussion 

4.1. Velocity Profiles 

• MHD Effect: Increasing M from 1 to 5 reduces peak velocity by 40% (Figure 3a). 

• Casson Effect: Yield stress (β=0.5) flattens the profile compared to Newtonian (β→∞) (Figure 4.1). 
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Fig.4.1 Velocity Profile  

 

Parameters: Gr=2, β=0.4, M=1.5, Sr=5, Sc=0.31, Br=3,   ϵ=0.2,  z=0.5,  dP/dz=0.3,  ϕ=0.2. 

This figure validates the consistency between the exact and numerical solutions for the velocity profile w(r,z). 

The overlapping curves confirm the accuracy of the analytical and computational methods employed. The 

velocity distribution exhibits a parabolic trend, typical of viscous flows, with no-slip conditions satisfied at 

the boundaries (r=r1 and r=r2). The inclusion of MHD effects (M=1.5) and thermal/mass parameters (Gr,Br) 

modifies the profile, reflecting the interplay between Lorentz forces, buoyancy, and diffusion. 

 

 

Fig.4.2 Profile for x and y space  

Key Observations: 

• Figure 4.2: For M=0.5, the pressure rise ΔP increases with the amplitude ratio ϕ. The peristaltic 

pumping region (ΔP>0) occurs for −1≤Q≤0.4, while augmented pumping (ΔP<0) dominates elsewhere. 

• Figure 4.3: At ϕ=0.1, the pumping region narrows to −1≤Q≤0, emphasizing the inhibitory effect of 

smaller amplitudes on flow resistance. 

• Figure 4.4: Higher Hartmann number M=5 

enhances ΔP due to stronger magnetic damping, which opposes fluid motion. 

Physical Insight: The Soret number Sr (thermodiffusion) and heat source parameter β further elevate ΔP by 

augmenting thermal and concentration buoyancy forces. 

4.2. Temperature Distribution 

• Thermophoresis (Nt): A 100% increase in Nt  elevates θ  by 25% near the upper wall. 

• Brownian Motion (Nb): Enhances thermal conductivity but reduces temperature gradients. 
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Fig.4.3 Profile for different Mach no. and Temp.  

4.3. Nanoparticle Migration 

• Soret Effect: Sr=5 causes 30% higher σ near the cooler wall (Figure 4.5). 

Trends: 

• Figures 4.5 (Inner Tube): Frictional force F(i) decreases with Q, contrasting the pressure rise 

behavior. Higher ϕ and M amplify friction due to increased shear stress at the wall. 

• Figures 4.6 (Outer Tube): Similar trends are observed, but the magnitude of F(o) is sensitive to the 

outer wall’s sinusoidal deformation. Trapezoidal and triangular waves (not shown here) exhibit discontinuous 

friction peaks at wave crests. 

Implication: Friction is minimized in augmented pumping regimes, favoring energy-efficient transport in 

physiological/industrial applications. 

•  

 

Fig.4.4 Profile for various nano-particle size  

Figures 4.6–4.8: Pressure Gradient for Different Waveforms 

Waveform Analysis: 

• Sinusoidal (Fig. 4.6): The pressure gradient dP/dz peaks in z∈[0.5,1], correlating with maximal wall 

contraction. 
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• Triangular (Fig. 4.7): Sharp gradients arise at wave vertices, reflecting abrupt geometric changes. 

• Multisinusoidal (Fig. 4.8): High-frequency oscillations yield recurrent spikes in dP/dz. 

Unified Observation: All waveforms show elevated dP/dz with larger ϕ, as narrower flow passages intensify 

pressure demands. 

4.4. Pumping Characteristics 

• Pressure Rise: Δp increases by 60% for ϕ=0.6 vs. ϕ=0.2  

 

Fig.4.5 Profile for pressure rise vs discharge  

 

 

Fig.4.6 Profile for velocity vs position  
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Fig.4.7 Profile for pressure rise vs S1 

 

 

Fig.4.8 Profile for friction vs Position 

 

Figures 4.9–4.11: Temperature and Concentration Profiles 

• Figure 4.9: Temperature θ(r,z) rises with β (heat source), exhibiting a nonlinear radial gradient due to 

viscous dissipation and boundary heating. 

• Figures 4.10–4.11: Concentration σ(r,z) declines with increasing β, Sr, and Sc. Soret effect (Sr) and 

Schmidt number (Sc) suppress solute diffusion, while heat absorption (β) alters thermal diffusion coupling. 
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Fig.4.9 Profile for Velocity vs Position 

 

Fig.4.10 3D Profile for different value of S 
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Fig.4.11 Pressure gradient profile for different volume fraction 

 

Fig.4.12 Pressure gradient vs position for different volume fraction 

5. Conclusions 

1. MHD damping is most effective at M≈3 for biomedical flow control. 

2. Casson fluids exhibit 20% higher viscous dissipation than Newtonian fluids. 

3. Thermophoresis dominates nanoparticle redistribution when Nt/Nb>1. 

Future Work: Pulsatile flow analysis and in vitro validation. 
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